
Counting integer points in a convex rational polytope

Problem

We have a convex rational polytope and want to count the integer points inside it, that is given P =
{x ∈ Zn, Ax ≤ B}, we want #P . The algorithm described is polynomial in the number of inequalities
with the dimension n fixed.

Preface

In a period of downtime, I got interested in algebraic number theory and ended up having to count vectors
with coefficients limited in size in the kernel of a matrix. Thus I discovered Barvinok’s algorithm. At
least two solvers already exist but reinventing the wheel is so fun.

This algorithm can be implemented from scratch (I only ended up using fplll library, did not try to
plug my pseudo-working LLL implementation) while using some beautiful ideas and neat tricks. The
presented version is primal half-open variant only, which to me was more easily understandable as it does
without the whole notion of polarity.

The purpose of this document is to give a rather informal presentation of the algorithm skimming over
many proofs, focusing instead on the intuition. Several implementation details that are either completely
unmentioned or glossed over in the litterature are also presented. It should be fairly comprehensive so
as to allow the reader to implement the full algorithm. That’s because I’m redacting this partly for
documentation purposes, not too long after finishing the implementation.

Basic algebra and convex optimization notions are not explained. The reader unfamiliar with such
notions should refer to documents such as [1].

Overview

Given a convex rational polytope P = {x ∈ Zn, Ax ≤ B}, find #P . The algorithm steps are:

• view the polytope as a signed sum of (pointed) tangent cones about a vertex and of tangent cones
of faces.

• The generating function view allows us to consider only the tangent cones about a vertex as the
others are non-pointed.

• Decompose each cone as a bunch of simplicial cones. The inclusion or exclusion of each face matters
so as not to count points multiple times.

• Compute the generating function of a simplicial cone.

1. Recursively express a simplicial cone as a signed sum of simplicial cones so that fundamental
parallelepiped of the cone can be enumerated.

2. List the points in the fundamental parallelepiped

• Evaluate the generating function at z = 1n

The generating function in practice is not explicitely computed. The evaluation is directly updated
as soon as more terms of the generating function are obtained. This however transforms the algorithm
to a randomized one but as we will see, failures do not matter as they happen on a measure zero set.

The main algorithm is first described for the simplest configuration: a non degenerate polytope with
integer vertices. In the last section, we address how these generalizations are handled.
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Toward a representation of the polytope as a signed sum of

pointed cones

We use the usual indicator function of a convex set C, defined as:

[C] : Rn 7→ R, [C](x) =

{

1 if x ∈ C

0 otherwise

Brion’s theorem states that:

[P ] =
∑

∅6=F faces of P (including P itself)

(−1)dim F [tcone(P, F )]

, where tcone(P, F ) is the tangent cone at any point xF ∈ F , in the interior of F (e.g. the tangent cone
of an edge of a convex 2D polygon is the half-plane containing P, supported by the edge)

The generating function of a polytope P is:

f(x, P ) =
∑

z∈Zn

[P ](z) × z =
∑

z∈P ∩Zn

z

For a simplicial pointed cone at vertex v with rays
⋃

i ri, the generating function is

f(x, Cv) = zv

∑

u∈(Π∩Zn) zu

∏

i(1 − zri)

This formula is very important and we’ll make use of it later. Nice explanatory pictures are found in [2].
The nice thing with this representation is that the generating function of non-pointed cones is 0. An easy
example showing this is the generating function for the x-axis line:

∞
∑

i=−∞

xi =

(

∞
∑

i=0

xi + x−i

)

− x0 =
1

1 − x
+

1

1 − x−1
− 1 =

(1 − x−1) + (1 − x) − (2 − x − x−1)

2 − x − x−1
= 0

Thus we can discard terms in the Brion formula where dim F 6= 0 (because all these terms are non
pointed cone). We are left with f(x, P ) =

∑

v∈vertex(P ) f(x, cone(P, v))

Suppose we have found the generating function f(x, P ). Evaluating this function at 1n gives us the
number of integer points in P, what we are looking for.

Going from cones to simplicial cones

We must go in 3D to find a non-simplicial cones we can have to handle coming from a polytope. A
pyramid has one non simplicial cone. A simplicial cone in n−dimensions has n rays that span the whole
space. Finding a decomposition of a cone into simplicial ones is easy.

Splitting the cone with a hyperplane

A non-simplicial cone has at least n + 1 rays. There exists a linear hyperplane formed by n − 1 rays such
that rays lie on both side of the hyperplane. Starting with k rays, we end up with a left and a right
set each at most k-1 rays. Moreover, the left and right cones only intersect on the splitting hyperplane.
Repeating this procedure, we eventually end up with a simplicial decomposition.

A sketch of a proof of why such a splitting linear hyperplane exists: Select n rays ri spanning the
whole space. Choose any remaining ray u. if u 6∈ cone(ri), then obviously a face of cone(ri) will fit as the
splitting hyperplane. It remains the case for u ∈ cone(ri). We have u =

∑

λiri, with λi ≥ 0. Moreover,
say λ1, λ2 > 0 (at least two are nonzero as it does not make sense to consider a cone with two collinear
rays). Thus

λ1r1 = u − λ2r2 −
∑

i>2

λiri

r1 = µuu + µ2r2 +
∑

i>2

µiri

, with µ2 < 0. Thus r1 6∈ cone(u, r2, ..., rn). We are back in the previous case, where a face of this new
cone can be chosen as the splitting hyperplane. �
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The simplicial cones are not disjoint

The only problem with this splitting is that the cones are sharing faces. It means that we might double
count integer points. The solution for this is to be able to compute the generating function of a cone
where we additionally decide to either include or exclude faces. It requires two things.

• decide how the including-excluding for the faces is done.

• how the generating function is computed with this additional constraint taken into account.

We’ll discuss the first problem here while we defer the second problem to the next section.

Attributing the include-exclude property to each face

To sum up the situation, a cone is split into multiple simplicial cones. The union is the original cone
but it is not disjoint. To make it disjoint, we need to play with the inclusion-exclusion of faces. More
formally:

• an extended simplicial cone is defined as Ck = Craw,k ∪ F̄k, where Craw,k = cone
(
⋃

i∈Ik
ri

)

and Fk

is the set of faces that should be included (F̄k excluded) for the cone Ck. A face has a one-to-one
mapping to a ray: we associate to ra the face cone(

⋃

i6=a ri).

• Denote by F0 the set of faces in the original cone and by F1 the set of inner faces, created by the
split (i.e. the set of faces of the simplicial cones minus F0).

• We must have
⋃

k Fk = F0 ∪ F1, as well as the condition that ∀(fa, fb) ∈ (F0 ∪ F1)2, fa ∩ fb =
˙⋃

k (Fk ∩ (fa ∩ fb)), with the emphasis on the disjoin union.

That will prevent the double counting. To find an assignement in a simple manner, one needs to
notice that F0 contributions comes from the faces of one simplicial cones and faces F1 comes from exactly
two simplicial cones. Thus each condition rests on at most two variables, the inclusion-exclusion of a
face for at most two simplicial cones. Hello 2-SAT. I don’t have a non-tedious way to present the 2-SAT
conditions so I’ll leave it as an exercise. As for the existence of a solution, there is one (in the literrature
it’s not achieved with 2-SAT but with a constructive algorithm). As a side note, the existence relies on
the all-inclusivity of the faces of the original cone, as some pattern exists where no solution can be found
(eg 1-0-1-0 for the pyramid).

This 2-SAT representation will also be used in the next section for face control when splitting simplicial
cones in search for cones with lower index.

Computing the generating function of a simplicial cone

Here we are given a simplicial cone about a vertex and a boolean list representing whether to include
or exclude each face. The generating function for a cone about a vertex v, with all faces included, is:

f(x, Cv) = zv

∑

u∈Π
zu

∏

i
(1−zri )

. Pictures in [2] help undertanding the formula.

Enumerating integer points in the fundamental parallelepiped

The fundamental parallelepiped is Π = {
∑

λiri, 0 ≤ λi < 1} .The solution to account for the inclusion-
exclusion of faces is obvious here. We just have to play on the strict-or-not inequalities. So for example,
if f0 is excluded and f1 is included, we have Π = {

∑

λiri, 0 < λ0 ≤ 1, 0 ≤ λ1 < 1}. That’s all. We now
have to to enumerate the points in the parametrized fundamental parallelepiped.

Smith normal form of the lattice matrix helps a lot

First, we observe how the number of integer points in the fundamental parallelepiped is related to the
determinant of the matrix with the lattice vectors as columns.

# (ΠA ∩ Zn) = | det(A)|, with A = (r1|...|rn), ri the cone rays

= ind cone(r1, ..., rn)

To see this, put A in the Smith normal form, A = UDV , (U, D, V integer matrices, D diagonal (plus a
condition on the diagonal elements, not relevant here), U and V unimodal). This form always exists and
can be computed easily by alternating row and column reduction. There is a bijection between elements
of L(A) and L(D) (the map φ(x) = U−1x maps elements of L(A) to elements of L(D). Bijective map
because V unimodular, and the inverse of an integer unimodular matrix is also integer). Integer points
of the fundamental parallelepipeds of L(A) and L(D) also are in a one-to-one mapping.
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Enumerating points using D and U

Enumerating the points in the fundamental parallelepiped of L(D) is trivial as D is diagonal. It simply
consists of the vectors 0 ≤ x < diag(D). Given x ∈ ΠD, Ux corresponds to a point in the fundamental
parallelepiped in ΠA, modulo L(A).

Finding the class representative in ΠA

We are gien a point y, and we want to find it’s equivalent in ΠA. Compute the inverse A−1 over the
Q. A−1y = (λ1...λn). z = A(λ̄1...λ̄n) with λ̄i = k + λi, k ∈ Z, 0

<
≤λ̄i

<
≤1 is the corresponding point in the

face parametrized fundamental parallelepiped. The weird symbol
<
≤ is a reminder that we play here on

strict-or-not inequalities here for the inclusion-exclusion of faces.

Decomposing a simplicial cone as signed sum of simpler simplicial cones

Complexity-wise, one cannot enumerate a given simplicial cone as its size is exponential in the coordinates
of the polytope. The solution is to decompose the simplicial cone as a signed sum of simpler simplicial
cones. This procedure is repeated until we obtain simplicial cones of manageable index. The branching
factor is at most n (n as in Zn) but the decrease of the index compensates more than enough so that the
depth of the tree ends up being O(log log ind B), with B the original simplicial cone (treated nicely in [1],
7.1.9).

A signed decomposition by choosing one vector

To achieve this, we will select a particular vector w and consider the cones Ki = cone(..., ri−1, w, ri+1, ...; θ), θ
indicating a particular parametrization for the inclusion-exclusion of the faces. One condition for this to
work is that cone(r1, ..., rn, w) must be pointed. This will be true iff w 6∈ −cone(r1, ..., rn) (proof is easy).
The condition gives an efficient algorithm to detect such cases. Then one can use −w.

Finding the sign for each cone

[K] =
∑

εi[Ki]

, with εi =











1 if ri and w are on the same side of the hyperplane containing{0, r1, ..., ri−1, ri+1, rn}

−1 if on different sides

0 if w is on the hyperplane. We can drop all such cones, they won’t contribute

Setting the include-exclude property of faces to avoid double counting

The inclusion-exclusion of faces is determined by modelling the problem as a satisfibility problem, with
clauses of at most 2 variables. 2-SAT again. Denote by Xij = 1 if the face j of Ki is included and
similarly, Yj the condition for the input cone K.

Xii ∗ εi =

{

1 if Yi

−1 otherwise

Xijεi + Xjiεj =

{

1 if Yi ∨ Yj

0 otherwise
, j 6= i,

Choosing the vector w guiding the decomposition

As the cone K is of full dimension, we have w = Aα. (A the matrix of K (columns are ri)) Let

U = (ind K1, ... ind Kn)

= (det(
∑

riαi, r2, ..., rn), ..., det(r1, r2, ..., ,
∑

riαi))

= (α1 ind K, ..., αn ind K)

= α × ind K

We want to find the shortest vector α (relative to the norm ‖‖∞), with w integer.

α = A−1w = ((A−1 × det(A))w)/ det(A)
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The matrix (A−1×det(A)) is an integer matrix (Cramer’s rule). Finding the minimum α is then equivalent
to finding the shortest vector of the lattice spanned by the columns of (A−1 ×det(A)). The LLL algorithm
can do that. w is recovered easily from α.

Note: one should always take the gcd of the coefficients for each rays, otherwise it will be hard to
reduce the index.

Evaluating the generating function at z = 1

The full generating function looks like:

f(z, P ) =
∑

cone(Ci,vi,θi)

εiz
vi

∑

u∈ΠCi,θi
zu

∏n

j=1(1 − zrCi,j )

=
∑

i

εi

zai

∏n

j=1(1 − zbij )

Warning: mathematical soundness of what follows is probably garbage; I’m just lowly software engi-
neer that had just a few analysis class ages ago. Anyways.

From multivariate limit to univariate

Looking at the formula we see that z=1 is a pole, so it’s not that simple to evaluate. As the number of
poles is finite (one for each rays), the function is meromorphic on Rn. We can evaluate the function at
z=1 using limits from whichever direction. Let zτ = (eτλ1 , ..., eτλn). Then

lim
z→1

f(z, P ) = lim
τ→0

f(zτ , P )

= lim
τ→0

∑

i

εi

eτ<λ,ai>

∏n

j=1 (1 − eτ<λ,bij>)

= lim
τ→0

∑

i

εiτ
−neτ<λ,ai>

n
∏

j=1

τ

(1 − eτ<λ,bij>)

If ∀i, j, < λ, bij >6= 0, we still have a meromorphic function and the limit approach remains valid.

Removing the limit by Taylor expansions

The last change in the previous equations was done because the function h(x) = x/(1− e−x) is analytical
in the neighborhood of 0, meaning that there is a taylor expansion at 0.

#P = lim
τ→0

∑

i

εiτ
−neτ<λ,ai> τ

∏n

j=1 (1 − eτ<λ,bij>)

= lim
τ→0

∑

i

εiτ
−nf1(τ, ai)

n
∏

j=1

f2(τ, bij)

=
∑

i

εi



f1(x, ai)
n
∏

j=1

f2(x, bij)



 [n], where [n] means getting the coefficient of xn

Cool, we only need to compute the taylor expansion of f1 and f2 with n + 1 terms. Note that
for efficiency, the polynomial multiplications should be done mod xn+1 so that useless terms are never
computed.

Computing the Taylor expansions

f1 is trivial.

f2(x, bij) =
h(−τ<λ,bij>)

−<λ,bij>
We now need the taylor expansion of h(x). It’s easy to compute the expansion

of 1/h(x) = (1 − e−x)/x (remove first term of −e−x, then shift by 1). Then,

1 = h(x) × (1/h(x)) = (
∑

aix
i)(
∑

bix
i)

. A decent recurrence formula is not hard to obtain from this( [1] chapter 7 covers this in depth).
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Choosing λ

Papers use a rather involved method using the moment curve. If you’re fine with a randomized algorithm
then just select a random vector and you’ll do ok. The reason for this is that the set of bad vectors is
measure zero. That’s because you have a finite number of rays which must not be orthogonal to your λ.
A finite union of measure zero sets is a measure zero set (the subspace orthogonal to a nonzero vector of
dimension n is of dimension n-1, hence of measure zero).

Handling complications

Rational vertices

Our generating function is a Laurent serie thus the variables have integer coefficients. That does not sit
well with zvi nor ΠCi,θi

in the formula. This is handled by shifting the cone to a nearby integer point and
enumerating the points of the fundamental parallelepiped so that these points are in the fundamental
parallelepiped of the cone at the rational vertex by playing on the lattice coefficients of the shift (so that

0
<
≤λi

<
≤1 in the view of the original rational cone).

Degenerate polytopes

A degenerate polytope is defined as P = {x|Ax ≤ B, Cx = D}. If the polytope is not full dimensional,
everything breaks down as lattice determinant are valid only for full dimensional lattices. The solution
is to project the polytope on a lower dimensional space such that there is a bijection between the integer
points of the original and projected polytope. This is done by projecting iteratively on a subspace of
dimension one less.

Let r be the first column of C, with gcd(r) = 1 (important, and if can’t simplify with D1, no solution
exist). There exists an integer unimodular matrix M such that rM = (1, 0, ..., 0) (hint: as gcd = 1, r can
be reduced to (1, 0, ..., 0) by unimodular operations. Representing these operations in a matrix gives M).
Since M is integer unimodular, integer points Zn and M × Zn are in bijection. Additionally, let x ∈ P .
Then

rtx = (xtM−1)1 = D1, (M−1 has r as its first row)

In other words, xtM−1 =

(

D1

y

)

and x = M

(

D1

y

)

(y integer because M is integer and unimodular). The

new polytope hyperplanes in the subspace are computed next. As a reminder, P = {x|Ax ≤ B, Cx = D}.
Consider one relation:

At
ix ≤ Bi

At
i

(

M

(

D1

y

))

≤ Bi

A′tiy ≤ B′i

, where A′ti = (At
iM)2...n

B′i = Bi − (At
iM)1 × D1

Similarly, relations Cx = D are updated.

Switching between cone and planar representation of a polytope

Degenerate polygons forces us to have primitives to switch the representation of a polytope. The simplest
way to achieve this is finding submatrices of full rank from the constraints to find vertices and computing
hyperplanes from n-1 vertices. Standard stuff, not much to talk about.

Closing words

All done. There’s plenty more to talk about the applications of this algorithm but the references are
there for that. Anyway, the algorithm in itself is worth the journey. I find especially pretty how the
representation as a polynomial allows us to drop non pointed cones and then how the evaluation of the
polynomial is done through series expansions.

I might release the C++ code if there is interest (< 2000 lines). However it would either be unusable
as is or I would need to release my personal codebase (hurray single repo :) ).

Until then,
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